Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery
نویسندگان
چکیده
Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3' positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids.
منابع مشابه
Targeted Cancer Diagnostic and Therapeutic Agents: Delivery by Carriers or Conjugation
Receptors and proteins are overexpressed in many human cancer cell membranes rather than normal tissues and are considered as the main molecular targets. Specific tumor- targeting molecules which have high affinity for these receptors can be valuable tools as carrier molecules for targeted cancer therapy and imaging. Pharmacokinetics and bioavailability of diagnostic and therapeutic agents are ...
متن کاملNanotechnology application in cancer treatment
Chemotherapy has been the main known treatment for cancer diseases. However, its achievement rate remains low, mainly because of the restricted accessibility of drugs to the tumor tissue, their painful toxicity, and development of multi-drug resistance. In recent years, either better understanding of tumor biology or development of the ever-growing field of nanotechnology has proposed new treat...
متن کاملImmunoliposomes: A Multipurpose Strategy in Breast Cancer Targeted Therapy
One of the main challenges in chemotherapy is the delivery of effective doses of cytotoxic agents to the tumor site and simultaneously to minimize the side effects on normal cells. The use of drug delivery systems (DDS) can improve the pharmacological properties of many agents, modifying their pharmacokinetics and biodistribution. Among the DDS available, liposomes are one of the most used and ...
متن کاملMultifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin
Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring. Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...
متن کاملPeptide targeted lipid nanoparticles for anticancer drug delivery.
Encapsulating anticancer drugs in nanoparticles has proven to be an effective mechanism to alter the pharmacokinetic and pharmacodynamic profiles of the drugs, leading to clinically useful cancer therapeutics like Doxil and DaunoXome. Underdeveloped tumor vasculature and lymphatics allow these first-generation nanoparticles to passively accumulate within the tumor, but work to create the next-g...
متن کامل